Identical twin Steiner triple systems

نویسندگان

  • Mike J. Grannell
  • Graham J. Lovegrove
چکیده

Two Steiner triple systems, each containing precisely one Pasch configuration which, when traded, switches one system to the other, are called twin Steiner triple systems. If the two systems are isomorphic the systems are called identical twins. Hitherto, identical twins were only known for orders 21, 27 and 33. In this paper we construct infinite families of identical twin Steiner triple systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automorphisms of Steiner triple systems

Abstract: Steiner triple systems are among the simplest and most intensively studied combinatorial designs. Their origins go back to the 1840s, and there exists by now a sizeable literature on the topic. In 1980, Babai proved that almost all Steiner triple systems have no nontrivial automorphism. On the other hand, there exist Steiner triple systems with large automorphism groups. We will discu...

متن کامل

Isomorphisms of Infinite Steiner Triple Systems

An infinite countable Steiner triple system is called universal if any countable Steiner triple system can be embedded into it. The main result of this paper is the proof of non-existence of a universal Steiner triple system. The fact is proven by constructing a family S of size 2 of infinite countable Steiner triple systems so that no finite Steiner triple system can be embedded into any of th...

متن کامل

Hamilton Decompositions of Block-Intersection Graphs of Steiner Triple Systems

Block-intersection graphs of Steiner triple systems are considered. We prove that the block-intersection graphs of non-isomorphic Steiner triple systems are themselves non-isomorphic. We also prove that each Steiner triple system of order at most 15 has a Hamilton decomposable block-intersection graph.

متن کامل

Embedding Steiner triple systems into Steiner systems S(2, 4, v)

We initiate a systematic study of embeddings of Steiner triple systems into Steiner systems S(2; 4; v). We settle the existence of an embedding of the unique STS(7) and, with one possible exception, of the unique STS(9) into S(2; 4; v). We also obtain bounds for embedding sizes of Steiner triple systems of larger orders. c © 2003 Elsevier B.V. All rights reserved.

متن کامل

Characterization of affine Steiner triple systems and Hall triple systems

It is known that a Steiner triple system is projective if and only if it does not contain the four-triple configuration C14. We find three configurations such that a Steiner Electronic Notes in Discrete Mathematics 29 (2007) 17–21 1571-0653/$ – see front matter © 2007 Elsevier B.V. All rights reserved. www.elsevier.com/locate/endm doi:10.1016/j.endm.2007.07.004 triple system is affine if and on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 66  شماره 

صفحات  -

تاریخ انتشار 2016